Química

Química


Você já se perguntou por que estudar Química?

Não é do conhecimento de todos, mas o estudo dessa ciência se relaciona com os avanços tecnológicos. Imagine se uma pessoa que viveu no século XVI pudesse viajar pelo tempo e ver as inúmeras novidades do século XXI? Ela iria encontrar, por exemplo, um aparelho chamado televisão que é um produto da era tecnológica na qual vivemos e se perguntaria: Como isso é possível?

Daí você pode pensar: Mas o que um televisor tem a ver com Química? A produção de diversos materiais que constituem a televisão depende dos conhecimentos de Química. E isso acontece também com muitos outros produtos presentes em nosso dia-a-dia, que em cuja composição a ciência está presente.

Nesta seção você terá acesso a inúmeras curiosidades do nosso cotidiano, todas relacionadas com a Química Experimental, saber como são produzidos os mais variados objetos e de quê eles são feitos. Confira!



Matéria e Energia


Matéria

Matéria é tudo o que tem massa e ocupa um lugar no espaço, ou seja, possui volume.
Ex.: madeira, ferro, água, areia, ar, ouro e tudo o mais que imaginemos, dentro da definição acima.

Obs.: a ausência total de matéria é o vácuo.

Corpo

Corpo é qualquer porção limitada de matéria.
Ex.: tábua de madeira, barra de ferro, cubo de gelo, pedra.

Objeto

Objeto é um corpo fabricado ou elaborado para ter aplicações úteis ao homem.
Ex.: mesa, lápis, estátua, cadeira, faca, martelo.

Energia

Energia é a capacidade de realizar trabalho, é tudo o que pode modificar a matéria, por exemplo, na sua posição, fase de agregação, natureza química. È também tudo que pode provocar ou anular movimentos e causar deformações.

Formas de Energia

Energia Cinética

Energia cinética é a energia associada ao movimento e depende da massa (m) e da velocidade (v) de um corpo.

Energia Potencial

É aquela que se encontra armazenada num determinado sistema e que pode ser utilizada a qualquer momento para realizar uma tarefa.

Energia Mecânica Total

A energia mecânica total de um corpo é constante e é dada pela soma das energias cinética e potencial.

É calculada pela expressão: Em = Ec + Ep

Obs.: No Sistema Internacional de Unidades (SI), a energia é expressa em joule (J).

Obs II.: Existem outra formas de energia: energia elétrica, térmica, luminosa, química, nuclear, magnética, solar (radiante).

Lei da Conservação da Energia

A energias não pode ser criada nem destruída. Sempre que desaparece uma quantidade de uma classe de energia, uma quantidade exatamente igual de outra(s) classe(s) de energia é (são) produzida(s).

Classificação dos Sistemas

A partir das noções de matéria e energia, podemos classificar os sistemas em função da sua capacidade de trocar matéria e energia com o meio ambiente.

Sistema Aberto

Tem a capacidade de trocar tanto matéria quanto energia com o meio ambiente.
Ex.: água em um recipiente aberto (a água absorve a energia térmica do meio ambiente e parte dessa água sofre evaporação).

Sistema Fechado

Tem a capacidade de trocar somente energia com o meio ambiente. Esse sistema pode ser aquecido ou resfriado, mas a sua quantidade de matéria não varia.
Ex.: Um refrigerante fechado.

Sistema Isolado

Não troca matéria nem energia com o sistema.

Obs.: a rigor não existe um sistema completamente isolado.

Ex.: um exemplo aproximado desse tipo de sistema é a garrafa térmica.

Propriedades da Matéria

Propriedades são determinadas características que, em conjunto, vão definir a espécie de matéria.

Podemos dividi-las em 3 grupos: gerais, funcionais e específicas.

Propriedades Gerais

São propriedades inerentes a toda espécie de matéria.

Massa: é a medida da quantidade de matéria.
Obs.: é importante saber a diferença entre massa e peso. O peso de um corpo é a força de atração gravitacional sofrida pelo mesmo, ou seja, é a força de atração que o centro da terra exerce sobre a massa dos corpos. O peso de um corpo irá varia em função da posição que ele assumir em relação ao centro da terra, enquanto a massa é uma medida invariável em qualquer local. Em Química trabalhamos preferencialmente com massa.

Extensão: é o espaço que a matéria ocupa, o seu volume.
Inércia: é a propriedade que os corpos têm de manter o seu estado de movimento ou de repouso inalterado, a menos que alguma força interfira e modifique esse estado.
Obs.: a massa de um corpo está associada à sua inércia, isto é, a dificuldade de fazer variar o seu estado de movimento ou de repouso, portanto, podemos definir massa como a medida da inércia.

Impenetrabilidade: duas porções de matéria não podem ocupar, simultaneamente, o mesmo lugar no espaço.

Divisibilidade: toda matéria pode ser dividida sem alterar a sua constituição, até um certo limite ao qual chamamos de átomo.

Compressibilidade: sob a ação de forças externas, o volume ocupado por uma porção de matéria pode diminuir.
Obs.: de uma maneira geral os gases são mais compressíveis que os líquidos e estes por sua vez são mais compressíveis que os sólidos.

Elasticidade: Dentro de um certo limite, se a ação de uma força causar deformação da matéria, ela retornará à forma original assim que essa força deixar de agir.

Porosidade: a matéria é descontínua. Isso quer dizer que existem espaços (poros) entre as partículas que formam qualquer tipo de matéria. Esses espaços podem ser maiores ou menores, tornando a matéria mais ou menos densa.
Ex.: a cortiça apresenta poros maiores que os poros do ferro, logo a densidade da cortiça é bem menor que a densidade do ferro.

Propriedades Funcionais

São propriedades comuns a determinados grupos de matéria, identificados pela função que desempenham.
Ex.: ácidos, bases, sais, óxidos, álcoois, aldeídos, cetonas.

Propriedades Específicas

São propriedades individuais de cada tipo particular de matéria.

Podem ser: organolépticas, químicas ou físicas.

I- Organolépticas

São propriedades capazes de impressionar os nossos sentidos, como a cor, que impressiona a visão, o sabor, que impressiona o paladar, o odor que impressiona o nosso olfato e a fase de agregação da matéria (sólido, líquido, gasoso, pastoso, pó), que impressiona o tato.

Ex.: água pura (incolor, insípida, inodora, líquida em temperatura ambiente)

barra de ferro (brilho metálico, sólida)

II - Químicas

Responsáveis pelos tipos de transformação que cada matéria é capaz de sofrer. Relacionam-se à maneira de reagir de cada substância.

Ex.: oxidação do ferro, combustão do etanol.

III - Físicas

São certos valores encontrados experimentalmente para o comportamento de cada tipo de matéria quando submetidas a determinadas condições. Essas condições não alteram a constituição da matéria, por mais diversas que sejam. As principais propriedades físicas da matéria são:

  • Pontos de fusão e solidificação

São as temperaturas nas quais a matéria passa da fase sólida para a fase líquida e da fase líquida para a sólida respectivamente, sempre em relação a uma determinada pressão atmosférica.

Obs.: a pressão atmosférica (pressão exercida pelo ar atmosférico) quando ocorre a 0° C, ao nível do mar e a 45° de latitude, recebe o nome de pressão normal, à qual se atribuiu, convencionalmente, o valor de 1 atm.

Ex.: água 0° C; oxigênio -218,7° C; fósforo branco 44,1° C

Ponto de fusão normal: é a temperatura na qual a substância passa da fase sólida para a fase líquida, sob pressão de 1atm. Durante a fusão propriamente dita, coexistem essas duas fases. Por isso, o ponto de solidificação normal de uma substância coincide com o seu ponto de fusão normal.

  • Pontos de ebulição e condensação

São as temperaturas nas quais a matéria passa da fase líquida para a fase gasosa e da fase gasosa para a líquida respectivamente, sempre em relação a uma determinada pressão atmosférica.

Ex.: água 100° C; oxigênio -182,8° C; fósforo branco 280° C.

Ponto de ebulição normal: é a temperatura na qual a substância passa da fase líquida à fase gasosa, sob pressão de 1 atm. Durante a ebulição propriamente dita, coexistem essas duas fases. Por isso, o ponto de condensação normal de uma substância coincide com o seu ponto de ebulição normal.

  • Densidade

É a relação entre a massa e o volume ocupado pela matéria.

Ex.: água 1,00 g/cm3; ferro 7,87 g/cm3.

  • Coeficiente de solubilidade

É a quantidade máxima de uma matéria capaz de se dissolver totalmente em uma porção padrão de outra matéria (100g, 1000g), numa temperatura determinada.

Ex.: Cs KNO3 = 20,9g/100g de H2O (10° c)

Cs KNO3 = 31,6g/100g de H2O (20° c)

Cs Ce2(SO4)3 = 20,0g/100g DE H2O (0° c)

Cs Ce2(SO4)3 = 10,0g/100g DE H2O (25° c)

  • Dureza

É a resistência que a matéria apresenta ao ser riscada por outra. Quanto maior a resistência ao risco mais dura é a matéria.

Entre duas espécies de matéria, X e Y, decidimos qual é a de maior dureza pela capacidade que uma apresenta de riscar a outra. A espécie de maior dureza, X, Risca a de menor dureza, Y. Podemos observar esse fato, porque sobre a matéria X, mais dura, fica um traço da matéria Y, de menor dureza.

SUBSTÂNCIA DUREZA SUBSTÂNCIA DUREZA
TALCO 01          FELDSPATO 06
GIPSITA 02            QUARTZO 07
CALCITA 03            TOPÁZIO 08
FLUORITA 04     CORÍNDON 09
APATITA 05        DIAMANTE 10


  • Tenacidade

É a resistência que a matéria apresenta ao choque mecânico, isto é, ao impacto. Dizemos que um material é tenaz quando ele resiste a um forte impacto sem se quebrar.

Observe que o fato de um material ser duro não garante que ele seja tenaz; são duas propriedades distintas. Por exemplo: o diamante, considerado o material mais duro que existe, ao sofrer um forte impacto quebra-se totalmente.

  • Brilho

É a capacidade que a matéria possui de refletir a luz que incide sobre ela. Quando a matéria não reflete luz, ou reflete muito pouco, dizemos que ela não tem brilho. Uma matéria que não possui brilho, não é necessariamente opaca e vice-versa. Matéria opaca é simplesmente aquela que não se deixa atravessar pela luz. Assim, uma barra de ouro é brilhante e opaca, pois reflete a luz sem se deixar atravessar por ela.

AS FASES DE AGREGAÇÃO DAS SUBSTÂNCIAS

Fase Sólida

A característica da fase sólida é a rigidez. As substâncias apresentam maior organização de suas partículas constituintes, devido a possuir menor energia. Essas partículas formam estruturas geométricas chamada retículos cristalinos. Apresenta forma invariável e volume constante.

Fase Líquida

A característica da fase líquida é a fluidez. As partículas se apresentam desordenadas e com certa liberdade de movimento. Apresentam energia intermediária entre as fases sólida e gasosa. Possuem forma variável e volume constante.

Fase Gasosa

A característica da fase gasosa é o caos. Existem grandes espaços entre as partículas, que apresentam grande liberdade de movimento. É a fase que apresenta maior energia. Apresenta forma e volume variáveis.

Mudanças de fases das substâncias

O estado de agregação da matéria pode ser alterado por variações de temperatura e de pressão, sem que seja alterada a composição da matéria. Cada uma destas mudanças de estado recebeu uma denominação particular:

Fusão: é a passagem da fase sólida para a líquida.

Vaporização: é a passagem do estado líquido para o estado gasoso.
Obs.: a vaporização pode receber outros nomes, dependendo das condições em que o líquido se transforma em vapor.

  • Evaporação: é a passagem lenta do estado líquido para o estado de vapor, que ocorre predominantemente na superfície do líquido, sem causar agitação ou o surgimento de bolhas no seu interior. Por isso, é um fenômeno de difícil visualização. Ex.: bacia com água em um determinado local, roupas no varal.


  • Ebulição: é a passagem rápida do estado líquido para o estado de vapor, geralmente obtida pelo aquecimento do líquido e percebida devido à ocorrência de bolhas. Ex.: fervura da água para preparação do café.


  • Calefação: é a passagem muito rápida do estado líquido para o estado de vapor, quando o líquido se aproxima de uma superfície muito quente. Ex.: Gotas de água caindo sobre uma frigideira quente.


Sublimação: é a passagem do estado sólido diretamente para o estado gasoso e vice-versa.
Obs.: alguns autores chamam de ressublimação a passagem do estado de vapor para o estado sólido.

Liquefação ou condensação: é a passagem do estado gasoso para o estado líquido.
Solidificação: é a passagem do estado líquido para o estado sólido.
Observe o esquema abaixo:

Diferença Entre Gás e Vapor

Vapor: Designação dada à matéria no estado gasoso, quando é capaz de existir em equilíbrio com o líquido ou com o sólido correspondente, podendo sofrer liquefação pelo simples abaixamento de temperatura ou aumento da pressão.

Gás: Fluido, elástico, impossível de ser liquefeito só por um aumento de pressão ou só por uma diminuição de temperatura, o que o diferencia do vapor.

Radioatividade: Introdução

Alguns átomos, principalmente os de grande massa, se desintegram espontaneamente, manifestando radioatividade.

Pierre Curie e Marie Curie, o casal Curie estudou a radioatividade dos sais de urânio. Eles verificaram que todos os sais de urânio tinham a propriedade de impressionar chapas fotográficas. Concluíram que o responsável pelas emissões era o urânio (U).
Fizeram muitas experiências, extraindo e purificando o urânio (U) a partir do minério pechblenda (U3O).
Observaram que as impurezas eram mais radioativas do que o próprio urânio. Separaram, em 1898, das impurezas, um novo elemento químico, o Polônio (Po) em homenagem à terra natal de Marie Curie, a Polônia. O Polônio é 400 vezes mais radioativo do que o urânio.
Mais experimentos foram feitos pelo casal e foi descoberto outro elemento químico, o Rádio (Ra), 900vezes mais radioativo que o urânio. Este elemento torna luninescente (azulado) quando esta no escuro e torna fluorescente algumas substãncias como ZnS, BaS, etc…
Os átomos dos elementos radioativos são muito instáveis. Por este motivo, a radioatividade se manifesta pela emissão de partículas do núcleo do átomo ou de radiação eletromagnética.

Desintegração ou Decaimento Nuclear – processo onde os núcleos instáveis emitem partícula e ondas eletromagnéticas para conseguir estabilidade.
Só é radioativo o elemento que tem seu núcleo instável. A estabilidade do núcleo atômico é determinada pelo número de massa (A), ou seja, quantidade de prótons mais nêutrons. A estabilidade só é rompida nos átomos com número de massa muito grande. A partir do polônio (Pó-84), todos os elementos têm instabilidade.
Há alguns átomos mais leves com núcleos instáveis, em proporções mínimas. São os chamados isótopos radioativos ou radioisótopos.
 

Cálculo do reagente limitante e em excesso

Para garantir que a reação ocorra e para ocorrer mais rápido, é adicionado, geralmente, um excesso de reagente. Apenas um dos reagentes estará em excesso. O outro reagente será o limitante.
Estes cálculos podem ser identificados quando o problema apresenta dois valores de reagentes. É necessário calcular qual destes reagentes é o limitante e qual deles é o que está em excesso. Depois de descobrir o reagente limitante e em excesso, utiliza-se apenas o limitante como base para os cálculos estequiométricos. 
Exemplos:
1) Zinco e enxofre reagem para formar sulfeto de zinco de acordo com a seguinte reação:

Reagiu 30g de zinco e 36g de enxofre. Qual é o regente em excesso?
Balancear a reação química: 
Dados:
Zn = 30g
S = 36g

Transformar a massa em gramas para mol:
              
                                               
                      

Pela proporção da reação 1mol de Zn reage com 1mol de S.
Então 0,46mol de Zn reage com quantos mols de S?
Pode ser feita uma regra de três para verificar qual regente está em excesso:
 x = 0,46mol de S
Então 1mol de Zn precisa de 1mol de S para reagir. Se temos 0,46mol de Zn, prrecisamos de 0,46mol de S, mas temos 1,12mol de S. Concluimos que o S está em excesso e, portanto o Zn é o regente limitante.
2) Quantos gramas de ZnS será formado a partir dos dados da equação acima?
Para resolver esta pergunta, utiliza-se somente o valor do reagente limitante.

x = 44,68g de ZnS
Algumas constantes e conversões úteis:
1atm = 760mmHg = 101325Pa
1Torr = 1mmHg
R= 0,082atm.L/mol.K
R= 8,314/mol.K
R= 1,987cal/mol.K
Número de Avogadro: 6,02.1023
1mL = 1cm³
1dm³ = 1L = 1000mL
1000Kg = 1ton
1Kg = 1000g
1g = 1000mg
1nm = 1.10-9m

Cálculo de Rendimento

CÁLCULO DE RENDIMENTO
É comum, nas reações químicas, a quantidade de produto ser inferior ao valor esperado. Neste caso, o rendimento não foi total. Isto pode acontecer por várias razões, como por exemplo, má qualidade dos aparelhos ou dos reagentes, falta de preparo do operador, etc.
O cálculo de rendimento de uma reação química é feito a partir da quantidade obtida de produto e a quantidade teórica (que deveria ser obtida).
Quando não houver referência ao rendimento de reação envolvida, supõe-se que ele tenha sido de 100%.
Exemplo:

Num processo de obtenção de ferro a partir do minério hematita (Fe2O3), considere a equação química não-balanceada:


Utilizando–se 480g do minério e admitindo-se um rendimento de 80% na reação, a quantidade de ferro produzida será de:
Equação Balanceada: 
Dados:  1Fe2O3 = 480g                                             
2Fe = x (m) com 80% de rendimento
MM Fe2O3 = 160g/mol
MM Fe = 56g/mol

x = 336g de Fe
Cálculo de Rendimento:

x = 268,8g de Fe 

Cálculo de Pureza


CÁLCULO DE PUREZA
O cálculo de pureza é feito para determinar a quantidade de impurezas que existem nas substâncias.
Estes cálculos são muito utilizados, já que nem todas as substâncias são puras.
Exemplo:
Uma amostra de calcita, contendo 80% de carbonato de cálcio, sofre decomposição quando submetida a aquecimento, de acordo com a reação:

Qual massa de óxido de cálcio obtida a partir da queima de 800g de calcita?
x = 640g de CaCO3  
Para o restante do cálculo, utiliza-se somente o valor de CaCO3  puro, ou seja, 640g.

x = 358,4g de CaO

Estequiometria da Equação Química


Os cálculos estequiométricos que envolvem uma reação química consiste em encontrar as quantidades de certas substâncias a partir de dados de outras substâncias que participam da mesma reação química.
Estes cálculos são feitos através de proporções. Deve-se levar em conta os coeficientes, que agora serão chamados de coeficientes estequiométricos.
Veja alguns passos que podem ser seguidos para montar e calcular:
1. fazer o balanceamento da equação química (acertar os coeficientes estequiométricos);
2. fazer contagem de mol de cada substância;
3. ler no problema o que pede;
4. relacionar as grandezas;
5. calcular com regra de três (proporção).
Exemplos:
1) 108g de metal alumínio reagem com o ácido sulfúrico, produzindo o sal e hidrogênio, segundo a reação abaixo:
Determine:
a) o balanceamento da equação:
  
Isto quer dizer que 2 mol de Al reage com 3 mol de H2SO4 reagindo com 1 mol de Al2(SO4)3 e 3 mol de H2
b) a massa o ácido sulfúrico necessária para reagir com o alumínio:
1°) passo:                                      2°) passo: 
            
                                         
                         

3°) passo:
 x = 588g de H2SO4
Relacionar a massa de ácido com a massa de alumínio, como no 3° passo. Antes, no 1° e no 2°passo, transformar o número de mol em gramas.

ESTEQUIOMETRIA COMUM / ESTEQUIOMETRIA DA FÓRMULA:

Os cálculos estequiométricos são cálculos que relacionam as grandezas e quantidades dos elementos químicos. Utiliza-se muito o conceito de mol nestes cálculos.
É muito importante saber transformar a unidade grama em mol. Pode-se usar a seguinte fórmula:

Onde:
n = número de mol (quantidade de matéria)
m = massa em gramas
MM = massa molar (g/mol)
Exemplo:
Quantas gramas existem em 2 mol de CO2?
                            
Este cálculo pode ser feito também por Regra de Três:
Para os cálculos com regra de três, sempre devemos colocar as unidade iguais uma embaixo da outra, como no exemplo acima.
Outros exemplos de cálculos estequiométricos envolvendo apenas a fórmula química:
  1. Quantos mols há em 90g de H2O?


90 = 18. x
5 mol = x
  1. Quantas moléculas de água há em 3 mol de H2O?

x = 3 . 6,02.1023
x = 18,06. 1023 ou 1,806.1024 moléculas
3) Qual o volume ocupado por 4 mol do gás Cl2 nas CNTP?
x  = 4 x 22,4
x = 89,6L
4) Quantos mols existem em 89,6L do gás CO2 nas CNTP?

x = 4 mol
 
1°ano
Os estados físicos da matéria
Toda matéria é constituída de pequenas partículas e, dependendo do maior ou menor grau de agregação entre elas, pode ser encontrada em três estados físicos: sólido, líquido e gasoso.
As pedras, o gelo e a madeira são exemplos de matéria no estado sólido. A água, o leite, a gasolina e o mel estão no estado líquido. Já o gás hidrogênio, o gás oxigênio e o gás carbônico estão no estado gasoso.
Cada um dos três estados de agregação apresenta características próprias - como o volume, a densidade e a forma - que podem ser alteradas pela variação de temperatura (aquecimento ou resfriamento).
Quando uma substância muda de estado, sofre alterações nas suas características macroscópicas (volume, forma, etc.) e microscópicas (arranjo das partículas), não havendo, contudo, alteração em sua composição.

O estado sólido

A matéria no estado sólido apresenta forma e volume constantes. Assim, se deixarmos um bloco de ferro sobre uma mesa, sua forma permanecerá a mesma.
As moléculas que formam os corpos estão sujeitas a forças de atração, conhecidas como forças de coesão. No estado sólido, as moléculas estão próximas uma das outras. Conseqüentemente, as forças de coesão são grandes, e as moléculas se movimentam pouco. Forças de coesão grande são responsáveis pela forma definida dos sólidos.
O estado líquido
A matéria no estado líquido mantém seu volume constante. Sua forma, porém, não é constante, correspondendo àquela do recipiente que a contém.
No estado líquido, as moléculas estão mais distantes, e as forças de coesão são bem menores. Ficando mais soltas, as moléculas apresentam maior mobilidade, o que confere aos líquidos a propreidade de assumir forma do recipiente que os contém.
O estado gasoso


No estado gasoso, a matéria não apresenta nem volume nem foma constantes. Como nos gases a distância entre as moléculas é muito grande, as forças de coesão entre elas são extremamente fracas, e elas têm grande mobilidade.
Quando liberamos um gás que estava preso em um frasco, ele se espalha pelo ambiente. Podemos verificar esse fato com facilidade se pensarmos no vapor exalado pelos perfumes. Embora sejam líquidos, eles evaporam muito rapidamente. Experimente abrir um frasco de perfume e afastar-se alguns metros. Você logo sentirá seu cheiro, o que mostra que parte dele evaporou e se espalhou pelo ambiente.
fonte: http://profmarialuiza.vilabol.uol.com.br/estados_materia.htm

 

Os estados físicos da matéria

Há muitas discussões sobre quantos estados da matéria existem, porém as versões mais populares atualmente são de que a matéria somente tem três estados: sólido, líquido e gasoso. Mas há também outros que, ou são intermediários ou pouco conhecidos. Por exemplo: os vapores,[3] que nada mais são uma passagem do estado líquido para o gasoso na mesma fase em que o gás, porém quando está em estado gasoso, não há mais possibilidade de voltar diretamente ao estado líquido; já quando em forma de vapor, pode ir ao estado líquido, desde que exista as trocas de energia necessárias para tal fato.[2] Por isto que diz comumente "vapor d´água".
Se colocarmos os estados físicos da matéria em ordem crescente, conforme a quantidade de energia que cada um possui, teremos:
Condensado de Bose-EinsteinSólidoLíquidoGasosoPlasma
O Plasma é o estado em que a maioria da matéria se encontra no universo. Neste estado há uma certa "pastosidade" da substância, que permite uma maior e melhor resposta quando recebe informações decodificadas pelos feixes de luz emitidos pelos componentes da TV. Sabe-se que qualquer substância pode existir em três estados: sólido, líquido e gasoso, cujo exemplo clássico é a água que pode ser gelo, água em estado líquido e vapor de água. Todavia há pouquíssimas substâncias que se encontram nestes estados, que se consideram indiscutíveis a difundidos, mesmo tomando o Universo no seu conjunto. É pouco provável que superem o que em química se considera como restos infinitamente pequenos. Toda a substância restante do universo subsiste no estado denominado plasma.[4]
No estado sólido considera-se que a matéria do corpo mantém a forma macroscópica e as posições relativas das suas partículas. É particularmente estudado nas áreas da estática e da dinâmica.
No estado líquido, o corpo mantém a sua quantidade de matéria e aproximadamente o seu volume. A forma e posição relativa das suas partículas é variável. É particularmente estudado nas áreas da hidrostática e da hidrodinâmica.
No estado gasoso, o corpo mantém apenas a quantidade de matéria, podendo variar amplamente a forma e o volume. É particularmente estudado nas áreas da aerostática e da aerodinâmica.
O condensado de bose-einstein possui características, de ambos, estado sólido e estado líquido, como supercondutividade e super-fluidez, porém, é encontrado em temperaturas extremamente baixas (próximas ao zero absoluto), o que faz com que suas moléculas entrem em colapso. É particularmente estudado na área da mecânica quântica.
O condensado fermiônico também possui características de ambos.

fonte: http://pt.wikipedia.org/wiki/Estados_f%C3%ADsicos_da_mat%C3%A9ria

2° Ano

SOLUÇÕES
As misturas podem ser homogêneas ou heterogêneas.
As misturas homogêneas possuem uma fase distinta.
As misturas heterogêneas possuem duas ou mais fases distintas.
Solução é uma mistura homogênea entre duas ou mais substâncias. O processo utilizado para obter esa mistura é chamdo de dissolução.

Uma solução é sempre formada pelo soluto e pelo solvente.



Soluto – substância que será dissolvida.
Solvente – substância que dissolve.
A água é chamada de solvente universal. Isso porque ela dissolve muitas substâncias e está presente em muitas soluções.
As soluções podem ser formadas por qualquer combinação envolvendo os três estados físicos da matéria: sólido, líquido e gasoso.
Exemplos de soluções no nosso dia-a-dia:
- álcool hidratado
- acetona
- água mineral
- soro fisiológico
Tipos de Dispersão
Dispersão – são sistemas nos quais uma substância está disseminada, sob a forma de pequenas partículas, em uma segunda substância.
Um exemplo é a mistura entre água e areia em um copo. No início, a mistura fica turva, mas com o passar do tempo, as partículas maiores vão de depositando no fundo do copo. Mesmo assim, a água ainda fica turva na parte de cima. A água não ficará totalmente livre de areia.
De acordo com o tamanho das partículas, podemos classificar estas dispersões em solução verdadeira, colóide e suspensão.
Veja a seguir o diâmetro médio das partículas dispersas:
Dispersão
Diâmetro médio
Soluções Verdadeiras
Entre 0 e 1nm
Colóides
Entre 1 e 1.000nm
Suspensões
Acima de 1.000nm
Obs. 1nm (nanômetro) = 1.10-9m

SOLUÇÃO
São misturas homogêneas translúcidas, com diâmetro médio das partículas entre 0 e 1nm.
Exemplos: açúcar na água, sal de cozinha na água, álcool hidratado.

COLÓIDES
São misturas homogêneas que possuem moléculas ou íons gigantes. O diâmetro médio de suas partículas é de 1 a 1.000nm. Este tipo de mistura dispersa facilmente a luz, por isso são opacas, não são translúcidas.
Podem ser sólidas, líquidas ou gasosas.
O termo colóide vem do grego e significa "cola" e foi proposto por Thomas Grahm, em 1860 para as denominar as substâncias como o amido, cola, gelatina e albumina, que se difundiam na água lentamente em comparação com as soluções verdadeiras (água e açúcar, por exemplo).
Apesar dos colóides parecerem homogêneos a olho nu, a nível microscópico são heterogêneos. Isto porque não são estáveis e quase sempre precipitam.
Exemplos: maionese, shampoo, leite de magnésia, neblina, gelatina na água, leite, creme.
Suspensão – são misturas com grandes aglomerados de átomos, íons e moléculas. O tamanho médio das partículas é acima de 1.000nm.
Exemplos: terra suspensa em água, fumaça negra (partículas de carvã suspensam no ar).
 
COEFICIENTE DE SOLUBILIDADE
Quando adicionamos sal a um copo com água, dependendo da quantidade colocada neste copo, o sal se dissolverá ou não. O mesmo acontece quando colocamos muito açúcar no café preto. Nem todo o açúcar se dissolverá no café. A quantidade que não se dissolver ficará depositada no fundo.
O Coeficiente de Solubilidade é a quantidade necessária de uma substância para saturar uma quantidade padrão de solvente, em determinada temperatura e pressão.
Em outras palvras, a solubilidade é definida como a concentração de uma substância em solução, que está em equilíbrio com o soluto puro a uma dada temperatura.
Exemplos:
AgNO3 – 330g/100mL de H2O a 25°C
NaCl – 357g/L de H2O a 0°C
AgCl – 0,00035g/100mL de H2O a 25°C
Veja que o AgCl é muito insolúvel. Quando o coeficiente de solubilidade é quase nulo, a substância é insolúvel naquele solvente.
Quando dois líquidos não se misturam chamamos de líquidos imiscíveis (água e óleo, por exemplo). Quando dois líquidos se misturam em qualquer proporção, ou seja, o coeficeinte de solubilidade é infinito, os líquidos são miscíves (água e álcool, por exemplo).

Classificação das Soluções Quanto à Quantidade de Soluto
De acordo com a quantidade de soluto dissolvida na solução podemos classificá-las em: solução saturada, solução insaturada e solução supersaturada.
Solução Saturada – são aquelas que  atingiram o coeficiente de solubilidade. Está no limite da saturação. Contém a máxima quantidade de soluto dissolvido, está em equilíbrio com o soluto não-dissolvido, em determinada temperatura. Dizer que uma solução é saturada é o mesmo que dizer que a solução atingiu o ponto de saturação.

Solução Insaturada (Não-saturada) – são aquelas que contém menos soluto do que o estabelecido pelo coeficiente de solubilidade. Não está em equilíbrio, porque se for adicionado mais soluto, ele se dissolve até atingir a saturação.

Solução Supersaturada – são aquelas que contém mais soluto do que o necessário para formar uma solução saturada, em determinada temperatura. Ultrapassa o coeficiente de solubilidade. São instáveis e podem precipitar,  formando o chamado precipitado (ppt) ou corpo de chão.


CURVAS DE SOLUBILIDADE
São gráficos que apresentam variação dos coeficientes de solubilidade das substâncias em função da temperatura.
Veja os coeficientes de solubilidade do nitrato de potássio em 100g de água. A a partir destes dados é possível montar a curva de solubilidade.
Temperatura (°C)
(g) KNO3 /100g de água
0
13,3
10
20,9
20
31,6
30
45,8
40
63,9
50
85,5
60
110
70
138
80
169
90
202
100
246

Para qualquer ponto em cima da curva de solublidade, a solução é saturada.
Para qualquer ponto acima da curva de solubilidade, a solução é supersaturada.
Para qualquer ponto abaixo da curva de solubilidade, a solução é insaturada.

Através do gráfico também é possível observar que a solubilidade aumenta com o aumento da tempratura. Em geral, isso ocorre porque quando o soluto se dissolve com absorção de calor (dissolução endotérmica). As substâncias que se dissolvem com liberação de calor (dissolução exotérmica) tendem a ser menos solúveis a quente.

Curva de Solubilidade de alguns sais
FONTE: http://www.furg.br/furg/depto/quimica/solubi.html

FONTE: http://luizclaudionovaes.sites.uol.com.br/solub.1.gif
Observando o gráfico acima sobre a solubilidade de alguns sais, responda:
1) Qual o soluto mais solúvel a 0°C?
É o KI, porque solubiliza quase 130g em 100g de água.
2) Qual o C.S. aproximado do NaNO3 a 20°C?

90
3) Se a temperatura de uma solução baixar de 70°C para 50°C, qual será aproximadamente a massa do KBr que precipitará?
70°C = 90g
50°C = 80g
Então: 90-80 = 10g
4)  Qual sal tem a solubilidade prejudicada pelo aquecimento?
Na2SO4
5) Se o KNO3 solubiliza 90g em 100g de água a 50°C, quanto solubilizará quando houver 50g de água?

x = 45g de sal KNO3
6) Que tipo de solução formaria 80g do sal NH4Cl a 20°C?
Solução Supersaturada.
Soluções Importantes no Cotidiano:
Ácido Acético Ácido Acético a 4% Temperar alimentos
Álcool Hidratado Hidratado 96% Álcool doméstico, empregado na  em limpeza
Soda Cáustica NaOH (líquido) Remoção de crosta de gorduras e fabricação de sabão
Soro Fisiológico NaCl (aquoso) 0,9% Medicina e limpeza de lentes de contato
Formol Metanal 40% Conservação de tecido animal
Aliança de ouro Ouro 18 quilates Joalheria
Água Sanitária Hipoclorito de sódio a 5% Bactericida e alvejante
Quanto à proporção do soluto/solvente
A solução pode ser:
- Concentrada: grande quantidade de soluto em relação ao solvente.
Exemplo: H2SO4 conc = ácido sulfúrico 98% + água
- Diluída: pequena quantidade de soluto em relação ao solvente.
Diluir significa adicionar mais solvente puro a uma determinada solução.
Exemplo: água + pitada de sal de cozinha.

TIPOS DE CONCENTRAÇÃO
Concentração é o termo que utilizamos para fazer a relação entre a quantidade de soluto e a quantidade de solvente em uma solução.
As quantidades podem ser dadas em massa, volume, mol, etc.
Observe:
m1= 2g
n2 = 0,5mol
V = 14L
Cada grandeza tem um índice. Utilizamos índice:
1 = para quantidades relativas ao soluto
2 = para quantidades relativas ao solvente
nenhum índice = para quantidades relativas à solução
Exemplos:
massa de 2g do soluto NaCl: m1= 2g
número de mols de 0,5mol do solvente água: n2 = 0,5mol
volume da solução de 14L: V = 14L
As concentrações podem ser:
  1. Concentração Comum
  2. Molaridade
  3. Título
  4. Fração Molar
  5. Normalidade
Concentração Comum (C)
É a relação entre a massa do soluto em gramas e o volume da solução em litros.

Onde:                                                                                                         
C = concentração comum (g/L)
m1= massa do soluto(g)
V = volume da solução (L)
Exemplo:
Qual a concentração comum em g/L de uma solução de 3L com 60g de NaCl?



Concentração comum é diferente de densidade, apesar da fórmula ser parecida. Veja a diferença:

A densidade é sempre da solução, então:


Na concentração comum, calcula-se apenas a msoluto, ou seja, m1
Molaridade (M)
A molaridade de uma solução é a concentração em número de mols de soluto e o volumede 1L de solução.

Onde:                                                          
M = molaridade (mol/L)
n1= número de mols do soluto (mol)
V = volume da solução (L)

O cálculo da molaridade é feito através da fórmula acima ou por regra de três. Outra fórmula que utilizamos é para achar o número de mols de um soluto:

Onde:
n = número de mols (mol)
m1 = massa do soluto (g)
MM = massa molar (g/mol)
Exemplo:      
Qual a molaridade de uma solução de 3L com 87,75g de NaCl?
                    
                  
              
Podemos utilizar uma única fórmula unindo a molaridade e o número de mols:

Onde:
M = molaridade (mol/L)
m1 = massa do soluto (g)
MM1= massa molar do soluto (g/mol)
V = volume da solução (L)
Título () e Percentual (%)
É a relação entre soluto e solvente de uma solução dada em percentual (%).
Os percentuais podem ser:
- Percentual massa/massa ou peso/peso:
%m/m ; %p/p

- Percentual massa/volume:
%m/V ; %p/V
  
- Percentual volume/volume:
%v/v

Exemplos:
NaCl 20,3% = 20,3g em 100g de solução
50% de NaOH = 50g de NaOH em 100mL de solução (m/v)
46% de etanol = 46mL de etanol em 100mL de solução (v/v)
O título não possui unidade. É adimensional. Ele varia entre 0 e 1.
O percentual varia de 0 a 100.
   ou  
Para encontrar o valor percentual através do título:

Relação entre concentração comum, densidade e título:

     
Relação entre outras grandezas:

Ou simplesmente:





 Exemplo:
1) Uma solução contém 8g de NaCl e 42g de água. Qual o título em massa da solução? E seu título percentual?
                        % = ?
                        
               
                                                                       
                                
 
                                   
2) No rótulo de um frasco de HCl há a seguinte informação:
título percentual em massa = 36,5%
densidade = 1,18g/mL
Qual a molaridade desse ácido?
Transformar o percentual em título:

Depois aplicar a fórmula:



Para achar a molaridade:



Fração Molar (x)
A fração molar é uma unidade de concentração muito utilizada em físico-química. Pode ser encontrado o valor da fração molar do soluto e também do solvente. É uma unidade adimensional.
     ou    

    ou     
Então:

Onde:
x = fração molar da solução
x1= fração molar do soluto
x2 = fração molar do solvente
n1= n°de mol do soluto
n2 = n° de mol do solvente
n = n° de mol da solução
Observação:



Exemplo:
Adicionando-se 52,0g de sacarose, C12H22O11 a 48,0g de água para formar uma solução, calcule para a fração molar da sacarose nesta solução:
            
Para achar a fração molar do soluto (sacarose):

 
Normalidade (N ou η)
É a relação entre o equivalente-grama do soluto pelo volume da solução. A unidade é representada pela letra N (normal). Está em desuso, mas ainda pode ser encontrada em alguns rótulos nos laboratórios.


Onde:                                                           
N = normalidade (N)
n Eqg1 = número de equivalente-grama do soluto
V = volume da solução
Como calcular o equivalente-grama?
Para ácido:
Onde:
1E ácido = 1 equivavelnte-grama do ácido
MM = massa molar
Exemplo:
Quantas gramas tem 1E (um equivalente-grama) de HCl?
           
Para base:
Onde:
1E base = 1 equivavelnte-grama da base
MM = massa molar
Exemplo:
Quantos equivalentes-grama tem em 80g de NaOH?
        
Para sal:
Onde:
1E sal = 1 equivavelnte-grama do sal
MM = massa molar
Exemplo:
Quantas gramas tem 1E de NaCl?
       
Resumindo as três fórmulas, o equivalente-grama pode ser dado por:
Onde:
MM = massa molar
x = n° de H+, n° de OH- ou n° total de elétrons transferidos
Algumas relações entre normalidade, molaridade e massa:
         
Exemplo de cálculo envolvendo normalidade:
Qual a massa de ácido sulfúrico (H2SO4) contida em 80mL de sua solução 0,1N?
Dados:
MM = 98g/mol
V = 80mL = 0,08L
N = 0,1N
m1= ?
Calcular o equivalente-grama:
Calcular a massa:
            
DILUIÇÃO
Consiste em adicionar mais solvente puro a uma determinada solução.
A massa de uma solução após ser diluída permance a mesma, não é alterada, porém a sua concentração e o volume se alteram. Enquanto o volume aumenta, a concentração diminui. Veja a fórmula:
Onde:
M1 = molaridade da solução 1
M2 = molaridade da solução 2
V1 = volume da solução 1
V2 = volume da solução 2
Para esta fórmula, sempre M1 e V1 são mais concentrados e M2 e V2 são mais diluídos.

Exemplo:
Um químico deseja preparar 1500mL de uma solução 1,4mol/L de ácido clorídrico (HCl), diluindo uma solução 2,8mol/L do mesmo ácido. Qual o volum de solução que havia na primeira solução a ser diluída?
Dados:
             



Observe que as unidades de volume foram mantidas em mL. Se uma das unidades for diferente, deve-se transformar para litros.

MISTURA DE SOLUÇÕES
- De mesmo soluto: na mistura de soluções de mesmo soluto não há reação química entre estas soluções. Neste caso, o valor do volume final é a soma das soluções.


Onde:
C = concentração comum (g/L)
M = molaridade (mol/L)
V = volume (L)
Exemplo:
Qual a molaridade de uma solução de NaOH formada pela mistura de 60mL de solução a 5mol/L com 300mL de solução a 2mol/L?
        
                                                                              
- De diferente soluto que reagem entre si: ocorre reação entre as substâncias que compõe a mistura. Para que a reção seja completa entre os solutos, os volumes misturados devem obedecer a proporção estequiométrica que corresponde à reação química.
Veja as fórmulas utilizadas:
Reação de Neutralização:

      
         
Pode-se usar a seguinte fórmula:
Onde:
xa = número de H+
xb= número de OH-
Estes cálculos também podem ser feitos por regra de três e utilizando as outras fórmulas.
Exemplo:
Juntando-se 300mL de HCl 0,4mol/L com 200mL de NaOH 0,6mol/L, pergunta-se quais serão as molaridades da solução final com respeito:
a) ao ácido:
b) à base:
c) ao sal formado:
Montar a reação química:
Calcular n (número de mol) do ácido e da base:
     
Se forma 0,12mol de ácido e também de base e a proporção estequiométrica é 1:1, então a molaridade final de ácido e de base é zero porque reagiu todo o soluto.
Calcular a molaridade do sal:
Antes achar o volume final:

              
Titulação
Método de análise volumétrica que consiste em determinar a concentração de ácido ou de base atravpes de um volume gasto de uma das soluções com molaridade conhecida.
Este método é muito utilizado em laboratórios químicos e é utilizado as seguintes vidrarias e reagentes:
- erlenmeyer (vidro usado para guardar e preparar soluções);
- bureta (tubo de vidro graduado em milímetros com torneira;
- indicador ácido-base (fenolftaleína, alaranjado de metila, etc).



Na bureta, coloca-se a solução de concentração conhecida, a qual é adicionada a uma alíquota (porção) da solução com concentração a ser determinada.
O momento em que o indicador muda de cor chamamos de ponto de final ou ponto de equivalência. Anota-se o volume gasto na bureta. Atraves deste volume podemos estabelecer as quantidades, em mol, que reagiram entre si.
fonte: http://www.soq.com.br/conteudos/em/solucoes/index.php

Um comentário: